A refinement of Christol’s theorem for algebraic power series

نویسندگان

چکیده

A famous result of Christol gives that a power series $$F(t)=\sum _{n\ge 0} f(n)t^n$$ with coefficients in finite field $$\mathbb {F}_q$$ characteristic p is algebraic over the rational functions t if and only there finite-state automaton accepting base-p digits n as input giving f(n) output for every $$n\ge 0$$ . An extension Christol’s theorem, complete description closure {F}_q(t)$$ , was later given by Kedlaya. When one looks at support an series, set which $$f(n)\ne well-known dichotomy sets generated automata shows either sparse—with number $$n\le x$$ bounded polynomial $$\log (x)$$ —or it reasonably large sense grows faster than $$x^{\alpha }$$ some positive $$\alpha $$ The collection sparse supports forms ring we give purely characterization this terms Artin–Schreier extensions extend to context Kedlaya’s work on generalized series.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

Effective Algebraic Power Series

The division algorithm for ideals of algebraic power series satisfying Hironaka’s box condition is shown to be finite when expressed suitably in terms of the defining polynomial codes of the series.

متن کامل

Encoding Algebraic Power Series

The division algorithm for ideals of algebraic power series satisfying Hironaka’s box condition is shown to be finite when expressed suitably in terms of the defining polynomial codes of the series. In particular, the codes of the reduced standard basis of the ideal can be constructed effectively.

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02868-7